Need help?

Data Scientist vs Data Engineer vs Data Analyst

Data Science jobs are eating job boards. Most companies continue to work on building their data teams with engineers, scientists, and analysts. So what exactly is the difference between these roles. Who does what? Read on to find more.

The Complete Checklist For Your Data Science Team

1. Checklist For Data Scientist

This checklist will enable data scientists to combine their data skills with analytical techniques to develop robust analytical models.

πŸ‘‰ Business Analysis and Data Visualization

Tools Required: Pen, paper, presentations, entity-relationship diagrams, and project management software such as Trello or Jira.

Expected work:

      1. Formulate and test a hypothesis with an analytical mindset.
      2. Design an experimental project, apply data science workflows, and curate data relevant to business outcomes.
      3. Analyze data for insights using visualizations.
      4. Present data science projects to stakeholders using visuals that aid their understanding.

πŸ‘‰ Programming and Database Concepts

Tools Required: Python, R, Matlab, IDEs, and Notebooks

Expected work:

      1. Write code to read data, access packages, and apply logic.
      2. Debug, optimize, organize, and comment on your code.
      3. Clean data using statistical approaches.
      4. Create, read, update, and delete data on databases.
      5. Apply data normalization and collect data from sources such as APIs and the web.

πŸ‘‰ Statistics, Big Data, and Machine Learning Algorithms

Tools Required: R Studio, Pandas, SAS, Excel, A/B testing, data mining, Hadoop, MongoDB, Tensorflow, and Amazon Machine Learning.

Expected work:

      1. Build and measure the quality of statistical models over time.
      2. Apply inferential and descriptive statistics to understand the characteristics of a population and identify trends.
      3. Recommend appropriate searching and indexing methods.
      4. Use big data tools and platforms to access data and run models.
      5. Apply clustering, classification, and Natural Language Processing algorithms.

Meet Our Data Scientist

Sandeep Natoo

Head Of Emerging Tech

Sandeep is a certified, highly accurate, and experienced Data Scientist adept at collecting, analyzing, and interpreting large datasets, developing new forecasting models, and performing data management tasks. Sandeep possesses extensive analytical skills, strong attention to detail, and a significant ability to work in team environments. Sandeep has 12+ years of experience in building software products and juggling with data.

He has been known for translating complex datasets into meaningful insights, and his passion lies in interpreting the data and providing valuable predictions with a good eye for detail. He is highly optimistic and an avid reader.

2. Checklist for Data Engineer

This checklist will help data engineers use the right tools to develop a high-performance infrastructure that efficiently consumes and understands data.

πŸ‘‰ Business Analysis, Approach, and Management

Tools Required: Notebooks and pens.

Expected work:

      1. Think analytically and work with stakeholders to identify data sources.
      2. Communicate all solutions to your team members.

πŸ‘‰ Programming, Database Concepts, and Big Data

Tools Required: Python, R, Matlab, IDEs, notebooks, databases, data stores, Talend, Hadoop, and Spark ecosystems.

Expected work:

      1. Write code to read data, access packages, and apply logic.
      2. Debug, optimize, organize, and comment on your code.
      3. Manage database schema, extract, transform, and load data.
      4. Optimize the performance of database queries and collect data from various sources.
      5. Scale data science projects with architectural components.
      6. Architect high-performance frameworks to process a variety of data.
      7. Ensure that data is easily accessible for analysis.

3. Data Analyst Checklist

This checklist will enable organizations to communicate insights that use exploratory analysis to deliver business value.

πŸ‘‰ Business Analysis and Data Visualization

Tools Required: Pen, paper, presentations, ggplot, entity-relationship diagrams, and project management software such as Trello or Jira.

Expected work:

      1. Formulate and test a hypothesis with an analytical mindset.
      2. Design an experimental project, apply data science workflows, and curate data relevant to business outcomes.
      3. Analyze data for insights using visualizations.
      4. Present data science projects to stakeholders using visuals that aid their understanding.

Are You Looking For An Experienced Data Science Team For Your Businesses?

πŸ‘‰ Programming, Data Modelling, and Database Concepts

Tools Required: R Studio, Pandas, SAS, Excel, A/B testing, data mining, Python, R, Matlab, IDEs, and MySQL.

Expected work:

      1. Write code to read data, access packages, and apply logic.
      2. Debug, optimize, organize, and comment on your code.
      3. Create, read, update, and delete data on databases.
      4. Extract, transform and load your data.
      5. Identify outliers and clean data using statistical approaches.

Use this checklist to find the right fit in your team. In case you need help or would like to connect with a team that can take care of all your data science needs, connect with us today.

We Keep Sharing Tips And Learnings On Growth And Technology. Join Our Popular Newsletter That Goes Out Once In 2 Weeks

Content Team

This blog is fromΒ Mindbowser‘s content team – a group of individuals coming together to create pieces that you may like. If you have feedback, please drop us a message on contact@mindbowser.com
We do publish often and our blogs are often accompanied by research and surveys. If you would like to be the first to receive an update on whenever we publish, subscribe to our newsletter.

Get in touch for a detailed discussion.

What’s on your mind? Tell us a little bit about yourself and your question, and we will be in touch with you within 12 hours

Free eBook on Telemedicine Platform Development: All About Telemedicine

Download Free eBook Now!